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Abstract—Cloud database, also called Database as a Service 

(DbaaS), can provide subscription-oriented, enterprise-quality 

services with high availability, reliability and scalability.  It may 

be defined as a pay-per-use model for enabling on-demand 

access to reliable and configurable services that can be quickly 

provisioned and released with minimal management. 

Users/tenants need not set up the infrastructure or buy the 

software, but pay to the cloud service provider only for the 

services they use through a performance service level agreement 

(SLA) that specifies the performance requirements and the 

pricing associated with the leased services.  Due to changes in 

queries and/or databases, tenants’ performance SLA may be 

violated at some point in time. So a performance tuning 

technique that can re-guarantee the performance SLA when 

such a violation occurs, and at the same time, does not increase 

the service provider’s operating cost, is needed. This paper 

proposes a performance tuning algorithm, called AutoClustC, 

which estimates the costs of resource provisioning and database 

re-partitioning and chooses the lower cost approach to tune the 

system in order to re-guarantee the performance SLA when a 

performance violation occurs.   When database partitioning is 

chosen, the algorithm implements a novel database attribute 

partitioning algorithm, which takes both performance SLA and 

operation cost into consideration, and uses data mining 

techniques to automatically and dynamically re-partition the 

databases for a tenant to generate better partitioning solutions.   
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I. INTRODUCTION 

    DbaaS is becoming a more and more popular model for 
providing data management functions in a cost-effective way 
in the Cloud. Compared to traditional database system, 
DbaaS usually serves more clients or tenants, therefore facing 
more unpredictable workloads. This makes the SLAs 
guarantee work more difficult. So current DbaaS providers 
such as Amazon AWS-RDS [2] and Microsoft SQL Azure 
[24] offer only reliability SLAs which specify the fraction of 
availability over a fixed time period for their services that 
users can expect when they contract to use a service, but do 
not offer performance SLAs which guarantee the minimum 
levels of performance such as query response time [26].  
    Many efforts have been made on how to provide 
performance SLAs guaranteeing minimum level of 
performance, such as [18], [26] and [16]. But those works do 
not address a very important problem, which is what the 
service provider should do when the pre-defined performance 
SLAs are violated under some specific circumstance. Some 
existing solutions including static and dynamic resource 
provisioning ([34], [41]), queuing and scheduling [13], and 

admission control [36] could be used to solve such problem. 
But different approaches have different disadvantages. First, 
by static and dynamic resource provisioning  (provisioning is 
the process of allocating physical computing resources to 
virtual machine (VM)), when the system detects that the pre-
defined performance SLAs have a higher chance to be 
violated, more resources such as CPU will be added to 
improve the situation. A major disadvantage of this method 
is that the data center operation cost will increase, especially 
for static provisioning. The consequence of the improper 
provisioning might be the negative profit to the service 
provider. Second, by queuing and scheduling, the incoming 
queries are temporarily held in a queue and then scheduled 
based on some prioritization criteria, such as worse 
performance penalty cost. A major disadvantage of this 
method is that this solution only works for short-term load 
peaks, and some tenants’ performance may be heavily 
degraded due to their queries’ postponed execution. Third, by 
admission control, new queries are either stalled or rejected 
when performance SLAs have higher chance to be violated. 
The major disadvantage of this method is very similar to that 
of the second solution in that in order to guarantee some 
tenants’ performance SLAs, other tenants’ performance 
might have to be sacrified because their queries were stalled 
or rejected. As we can see, though a number of methods have 
been proposed to generate a proper performance based SLA 
for the service provider, it is really hard to find a way to re-
guarantee this performance SLA once a performance 
violation occurs. 
    Although the existing DbaaS providers do not provide any 
performance based SLAs, they still have to deal with the 
performance degrading problem caused by heavy workloads 
or query pattern changes. The typical solution is to do 
resources provisioning [32], [5]. Resources provisioning 
could eventually guarantee all tenants’ performance but it 
will cause the extra operation cost to the service provider. As 
the operation cost of the physical computing resources is one 
of the major costs to the service provider, improper usage of 
the resources could negatively impact the service provider’s 
profit. In this paper we propose a novel way of re-
guaranteeing the performance SLA by implementing a cost-
aware attribute (vertical database) partitioning algorithm, 
called AutoClustC, on cloud databases. By estimating the 
costs of the two approaches, resource provisioning and 
attribute partitioning, when a performance SLA violation 
occurs, this algorithm can choose the more profitable 
approach for the service provider to take in order to re-
guarantee the performance SLA. 



    The remainder of this paper is organized as follows. 
Section II discusses the different database partitioning 
techniques for single computers, cluster computers and 
clouds. Section III introduces the theoretical aspects of the 
proposed AutoClustC algorithm. Experimental evaluations 
are described in Section IV.  Finally, Section V presents the 
conclusions and future work. 

II. RELATED WORK 

In recent years, new resource provisioning techniques 
have been developed to address the cost and different user’s 
performance SLA issues (e.g. [5], [7], [32] and [31]). Though 
these techniques can help cloud service providers improve 
the quality of services, a common weakness of those 
techniques is that resource provisioning may significantly 
reduce the service providers’ profit. Though the providers 
have to handle the performance degrading problem, which 
may be caused by heavy workloads or query pattern changes, 
they cannot charge extra fees to the users. Computing 
resource is a major operation cost to service providers, 
resource provisioning will definitely increase the data 
center’s operation cost. Due to the above reasons, researchers 
have been looking for new ways to handle the cloud re-tuning 
problem. Database partitioning is one of the methods that can 
help service providers re-guarantee the performance SLAs. 
Such partitioning techniques should  be aware of the 
performance SLA violation, has the ability to estimate the 
costs of database repartitioning and resource provisioning to 
choose the lower cost approach for performance tuning, and 
generate better database partitioning solutions to replace the 
old ones if database repartitioning is the chosen approach. 
    As database partitions change over time due to changes in 
queries and/or databases, attribute re-partitioning is needed. 
In order to get a suitable attribute partitioning solution for 
better database performance, database attribute partitioning 
approaches have been proposed. In early days, many attribute 
partitioning techniques for single computers were developed, 
such as the algorithms published in [1], [27], [40] [28], [29], 
[17] and [15]. Nowadays, as the volume of data is getting 
bigger and bigger and the velocity of data is getting faster and 
faster, distributed databases based on cluster computers or 
clouds are widely used. The algorithms designed for single 
computers do not work well for this new environment, which 
leads to the development of attribute partitioning algorithms 
for distributed environments.  However, many of these 
algorithms were designed without considering the two major 
factors of cloud databases, performance SLA and operation 
cost. For example, the Amossen algorithm [3] is an attribute 
partitioning algorithm used only for OLTP applications on 
cluster machines. Generally in an OLTP application, there are 
many short queries with no many-row aggregates and the 
queries are processed only from the same site. It means that 
the queries happening on such a system are usually very 
simple. In [3] the authors present a cost model and then use 
simulated annealing to find the close-to-optimal attribute 
partitioning with respect to the cost model. The algorithm 
does not address any issue related to performance SLA 
guarantee or operation cost, and uses a pre-defined query 
workload to partition. This kind of attribute partitioning 

approach is called static partitioning; for such an approach, 
people may have to re-collect queries from a log file if they 
want to re-partition the database. Overall, this algorithm has 
no ability to automatically solve the performance SLA 
violation problem on a cloud database. 
    Another algorithm called GAC (Genetic Algorithm-Based 
Clustering) was proposed in [9].  The rows and columns in 
the attribute usage matrix are permutated to get a suitable 
attribute partitioning solution. The permutating process is 
then formulated as a travelling salesman problem (TSP), in 
which the distance (cost) measures between a pair of rows 
(attributes) and columns (transactions) are computed. The 
same as TSP, the best attribute partitioning solution should 
have the least distance (cost). When the distance is minimal, 
the corresponding permutating result is the final attribute 
partitioning solution. Similar to the Amossen algorithm, this 
GAC algorithm does not discuss any issues related to 
performance SLA or operation cost. The whole algorithm is 
built based on an existing workload, i.e. this algorithm is a 
static attribute partitioning algorithm and can be used only 
one time. So this algorithm has no ability to detect the 
performance SLA violation and to choose the most profitable 
way for the service provider to tune the cloud database. 

In [19], another static attribute partitioning algorithm, 
called AutoClust, was presented. This algorithm uses the 
query optimizer to generate attribute partitioning solutions. 
Multiple attribute partitioning solutions are selected from the 
candidate partitioning solution pool. Every future query will 
be routed to the computing node containing the partition that 
gives the best estimated query cost for the query execution.  
An improved version of the algorithm was presented in [20]. 
In this version, a query statistics analysis component is added. 
This component keeps monitoring the most recent queries 
processed by each computing node and reading the related 
query information (query id, query context, physical read 
ratio, logical read ratio, and query count) from the system 
views until enough physical read queries are collected. Then 
the query optimizer uses the information collected to evaluate 
the future average query estimated cost changing trend. If the 
trend is increasing on the majority of the computing nodes, 
the re-partitioning process is triggered. Though the algorithm 
is a dynamic algorithm, the authors do not discuss how this 
algorithm can guarantee performance SLA and how this 
algorithm can measure the operation cost. So this algorithm 
is not suitable for a cloud database as it cannot detect 
performance SLA violations and estimate the cost for 
different tuning methods on a cloud database. 
    In [14], the authors present a cost model which sums the 
cost of local transaction processing and remote transaction 
processing. Then the ant clustering algorithm [12] is used and 
takes this model as the key factor to decide whether an 
attribute is to be placed in a particular partition or not. The 
authors point out that the resulted partitions could be 
distributed to different nodes but provide no details. In 
addition, the authors do not consider performance SLA or 
operation cost issues. So this algorithm cannot use on a cloud 
database either. 
    From the existing attribute partitioning algorithms 
discussed above, [1], [27], [40], [28], [29], [17], [15], [3], [9], 



[19] and [14], we see that none of them is designed for cloud 
databases. Though there exist other database performance 
tuning algorithms designed for cloud databases, none of them 
is for attribute partitioning. For instance, the work in [35] is 
for database replication in cloud databases; [32] is for 
resource provisioning in cloud databases; and [10] is for 
query scheduling in cloud databases. To fill this gap, in this 
paper we present AutoClustC, an algorithm to re-partition 
attributes on a cloud database. This algorithm has the ability 
to handle the performance SLA violation problem, estimate 
the cost difference between the database partitioning 
approach and the resource provisioning approach, and choose 
the lower cost approach to re-guarantee the performance SLA.  

III. AUTOCLUSTC 

In this section a performance SLA and cost-aware 
automatic attribute partitioning technique, called AutoClustC, 
is presented.  This technique can determine whether or not a 
database re-partitioning process is needed based on an SLA-
based profit optimization approach by estimating the costs of 
resource provisioning and attribute partitioning. The 
objective of our algorithm is to find the most profitable way 
and minimize the amount of consumed resources to re-
guarantee the DbaaS performance quality (performance SLA) 
when both resource provisioning and attribute partitioning 
are available for the service provider. The algorithm analyzes 
the most recent history resource demand (we use CPU as the 
example resource in this paper) and predicts the resource 
demand, which is the resource needed for resource 
provisioning for the near future if a performance SLA 
violation is detected for a tenant on a virtual machine (VM). 
Then the algorithm will compare the resource demand of 
resource provisioning with the resource demand of attribute 
partitioning, which is predicted by constructing an Artificial 
Neural Network using the history partitioning resource 
demand data, to find the most profitable system tuning 
approach. 

This section is divided into 4 subsections. In this first 
subsection, different multi-tenancy cloud database structures 
will be discussed. Since in our algorithm we consider the 
number of users of the cloud database as an important factor 
for estimating the cost of partitioning process, and this factor 
will be used as an input of the algorithm, we need to specify 
the multi-tenancy structure used in our algorithm first. In the 
second subsection, the characteristics of CPU utilization, 
which could be benefited most from dynamic resource 
provisioning, are briefly described. Since in order to ensure 
the accuracy of predicting the cost for dynamic provisioning, 
the CPU utilization has to match some pattern. In this 
subsection we will figure out what kind of CPU utilization is 
suitable for our prediction algorithm. In the third subsection, 
the model of how to estimate the cost of resource 
provisioning is proposed. In the last subsection, the model of 
how to estimate the cost of partitioning is proposed.  

A. Multi-Tenancy of DbaaS 

    There are many different ways of deploying DbaaS on a 
cloud with multi-tenancy [4], [11] and [35]. The four major 
options of hosting multiple tenants on a cloud database are: 

(1) all tenants’ data are located within the same database and 
the same tables with an extra identifier such as “TenantID” to 
differentiate the records from different tenants; (2) all tenants 
are located within a single database but in separate schemas 
to differentiate their tables in order to provide better schema 
level security; (3) each tenant is located in a separate database 
within the same DBMS instance in order to provide much 
greater security; and (4) each tenant has a separate VM with 
its own OS and DBMS in order to provide the greatest 
security and the most flexible control via VM management. 
    In this paper we assume the majority users of the cloud 
database are middle or small size companies since large size 
companies usually have the economic ability to afford their 
own data center. So we use the third option as the multi-
tenancy structure. This option provides a good trade-off 
between wasted resources due to extra OS and software 
license, and the complex management and security issues 
associated with the first two options [18]. 

B. CPU Utilization Traces on Cloud Databases 

    In [5] the authors describe three main categories of CPU 
utilization behaviors by studying a large number of traces 
from production servers. The authors conclude that only the 
utilization behavior shown in Figure 1, which is characterized 
by strong utilization variability and good autocorrelation (a 
mathematical representation of the degree of similarity 
between a given time series and a lagged version of itself over 
successive time intervals [6]) associated with this periodic 
behavior, could be benefited greatly by using the dynamic 
resource provisioning. In practice, this assumption is true for 
many applications since the workload on the server is often 
very low during the late evening and early morning, but will 
increase to a peak during the day time, then go down to the 
valley status after the day time. We therefore assume this 
CPU utilization behavior in our research. 
     

 

Figure 1. CPU utilization behaviors. 

    The CPU utilization behavior illustrated in Figure 1 has a 

specific period of about 1 day. The autocorrelation is always 

above 0.5 for 100 lags. It has been shown that this kind of 

http://www.investopedia.com/terms/t/timeseries.asp


time series behavior is very suitable for near future behavior 

prediction using the most recent historical behavior data [5]. 

In order to model such utilization behavior, in our algorithm, 

an Auto Regressive (AR) model will be used. An AR model 

can describe a certain time-varying process in which the 

output variables depend linearly on this process’s own 

previous values and on a stochastic term [33]. In the next 

subsection, the algorithm of how to use an AR model to 

predict the near future CPU utilization demand is presented. 

C. CPU Utilization Forecasting for Resource Provisioning 

    In order to understand the forecasting process more clearly, 
consider an example shown in Figure 2, which shows a 
snapshot of 24 hours CPU utilization demand historical data 
(U) with the demand probability density function (PDF) u(x). 
If the current time point is t0, and the prediction time interval 
is t, the forecasting process is to compute the average CPU 
demand, which is denoted by Uto+t in the next prediction time 
interval. If the prediction error is Et, the forecasting result will 
be Uto+t + Et. In [5], the authors use an AR model to compute 
the gain, which is the ratio of the estimated future CPU 
demand of dynamic resource provisioning to the estimated 
future CPU demand of static resource provisioning. In our 
algorithm we also use an AR model, but the exact estimated 
future CPU demand is computed so that we can compare the 
costs of resource provisioning and attribute partitioning.  
 

 

Figure 2. Dynamic provisioning estimation. 

    If we use ut(x) to represent the demand probability density 
function of the predicted time series, the exact average future 
demand forecast can be represented as 

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ (𝑥 + 𝐸𝑡) × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
 (1) 

    The expression (𝑥 + 𝐸𝑡) represents a given CPU resource 
allocation, which will be weighted with 𝑢𝑡(𝑥) , the 
probability of a particular provisioned CPU amount x. 
    Equation 1 can be rewritten as 

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ 𝑥 × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡  (2) 

    Equation 2 can be approximated using the following 
formula: 

𝑈𝑡0+𝑡 + 𝐸𝑡 ≈ ∫ 𝑥 × 𝑢(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 = 𝐸[𝑈] + 𝐸𝑡 (3) 

    where E[U] is the statistical mean of the measured 
historical CPU demand. Now the only undetermined 
parameter in Equation 3 is 𝐸𝑡, which will be computed based 
on [33] using Equations (4), (5) and (6). 

    Based on the assumption of our algorithm, the CPU 
demand is characterized by periodic behaviors. So for any 
time series T, the CPU demand in T can be represented as 

𝑈𝑇 = 𝐷𝑇 + 𝑈𝑇
𝑅  (4) 

    where 𝐷𝑇  is the sum of periodic components and 𝑈𝑇
𝑅 is the 

residual component of the CPU demand. Since the period is 
known, the 𝐷𝑇  is deterministic. The only random variable is 

𝑈𝑇
𝑅. In [33], 𝑈𝑇

𝑅 is modeled using a class of AR processes. An 
AR model is a simple and effective method in time series 
modeling. In particular, the authors use the second AR model 
(AR(2) model) as it has been demonstrated that a second 
order AR model is sufficient in most of the cases. The AR(2) 
model can be represented as 

𝑈𝑇
𝑅 = 𝛼1𝑈𝑇−1

𝑅 + 𝛼2𝑈𝑇−2
𝑅 + 𝜖𝑇 (5) 

    where 𝛼1 𝑎𝑛𝑑 𝛼2  are two AR(2) parameters that are 
estimated from the historical data, and 𝜖𝑇 is the error term, 
which is assumed to be an independently and identically 
distributed Gaussian random variable with a mean of zero and 
a variance of 𝜎𝜖

2. In order to study the accuracy of an n step 
prediction, a characteristic function of the AR model is 
defined as 

𝐺(𝑗) =
𝛾1

𝑗+1
−𝛾2

𝑗+1

𝛾1−𝛾2
  (6) 

    where 𝛾1 𝑎𝑛𝑑 𝛾2 are the roots of the equation 1 − 𝛼1𝐵 −
𝛼2𝐵2 = 0. Then the n step prediction error is represented 
using the Gaussian variable having mean zero and variance 

𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

2𝑛−1
𝑗=0 . Here, 𝜎𝜖

2 is the error variance of one 

step prediction. 
    Once the future CPU demand, CPU_Demand, is estimated, 
it can be used as the argument in the cost function 
C(CPU_Demand) to get the exact operational cost for 
resource provisioning, where C is a function describing the 
relationship between CPU time and money spent. In the next 
step, we need to estimate the cost of attribute partitioning. In 
the next subsection, a novel estimation technique will be 
proposed to predict the cost of attribute partitioning. 

D. CPU Utilization Forecasting for Attribute Partitioning 

    There are many factors that could impact the CPU time 
spent on figuring out a suitable attribute partitioning solution 
for a particular database table. The partitioning method used 
in our algorithm is based on the Closed Item Sets (CIS) [30] 
mining. The original version of the algorithm, called 
AutoClust, was first published in [15]. We can conclude 3 
major factors that may heavily impact the CPU utilization 
spent on the attribute partitioning process. The first factor is 
the size of the database, S. In AutoClust, query optimizer is 
used to estimate the cost of each partitioning solution, i.e. 
partitions will be temporarily physically created in order to 
let the query optimizer compute the cost. If the database size 
is large the partition creation process will require a high CPU 
cost to be finished. The second factor is the number of 
attributes in a database table, NA (if the partitioning process 
covers more than one table, the maximum number of 
attributes among those tables will be used). When mining the 
CIS from the query set, possible attribute sets have to be 
generated. If there are NA attributes, the possible number of 
attribute sets would be 2NA. Then each attribute set has to be 
compared with the attribute set accessed by each query in 



order to find out the CIS. There are many algorithms such as 
[43], [38] to prune the number of possible attribute sets, NA; 
but NA is still another factor that will impact the CPU cost on 
partitioning. Finally, the third factor is the number of query 
types, NQ. From the second factor, we already know each 
query type will be scanned in order to tell whether an attribute 
set is CIS. So NQ is a factor that has to be considered. Besides 
the above three factors, one more factor has to be added from 
the aspect of multi-tenancy, which is the number of users of 
the DbaaS, NU. In DbaaS, common physical resources are 
shared by multiple tenants. A major consequence of such 
environment is that the multiple tenants will compete for the 
resource of the same VM, which will delay the partition 
creation process. Hence the degree of multi-tenancy becomes 
an additional factor. 
    A cloud database is a complex system and the relationship 
between the partitioning cost and S, NA, NQ and NU is highly 
non-linear. Because of these characteristics, we propose to 
use an Artificial Neural Network (ANN) [25] to forecast the 
partitioning process cost since ANN performs well on 
complex systems that are intrinsically non-linear in nature [8]. 
In our ANN model, the inputs are S, NA, NQ and NU. One 
hidden layer with 8 neural nodes (twice the size of the input) 
is used between the input and output layers. The control 
architecture is a feed forward back propagation network. The 
activation function used is the sigmoid function, which is a 
transfer function used to calculate a layer's output from its net 
input, for all the inner nodes. This function can give the 
neural network the ability to learn and generate an output for 
which it is not trained. However, in order to make the ANN 
work properly, a well-defined training dataset is necessary. 
The whole ANN works in two phases: (1) the network is 
trained using the data provided by users; and (2) the new 
input is fed to the network and the network produces a desired 
output that is most appropriate for the given input. Since it is 
important to choose a proper training function and learning 
function, the TRAINGDX [22] and LEARNGDM [23] 
functions can be used in the network. The TRAINGDX 
function is a network training function that updates weight 
and bias values according to gradient descent momentum and 
an adaptive learning rate. The LEARNGDM function 
calculates the weight change for a given neuron from the 

neuron's input and error, the weight, learning rate, and 

momentum constant, according to gradient descent with 
momentum. The structure of the whole network is shown in 
Figure 3 where W represents the weight of a node and B 
represents the bias of a node. There are four different types 
of input (S, NA, NQ and NU) and one type of output (CPU 
time), so we have 4 nodes in input and 1 node in output. We 
use twice the size of the input types as the number of nodes 
in the hidden layer, so we have 8 nodes in the hidden layer.  
    Once the ANN model is constructed using the training 
dataset, the CPU time spent on the partitioning process can 
be predicted by sending the current values of the system 
parameters which are S, NA, NQ and NU, to the ANN model. 
Then the money spent on performing attribute partitioning 
tuning and resource provisioning tuning can be calculated by 
using the C(CPU_Demand) function where the CPU time 
estimated from each of the two forecasting partitioning and 

resource provisioning processes will be the argument of the 
C function. The method that yields the lowest monetary cost 
will be selected to improve the system performance. The 
algorithm is shown in Figure 4. 
 

 

Figure 3. The ANN model used for partitioning cost forecasting. 

Input:  

1. Historical CPU utilization data (U) 

2. Time interval of the future CPU demand forecasting (t) 
3. Size of the database (S) 

4. Maximum number of attributes of tables in the database (NA) 

5. Number of query types (NQ) 
6. Number of users (NU) 

Output: 

1. Estimated monetary cost of resource provisioning (CPV) 
2. Estimated monetary cost of attribute partitioning (CPT) 

// CPU time demand estimation for provisioning 

1. Compute u(x), the PDF of CPU utilization, using U; 
2. Compute E[U], the statistical mean of CPU utilization, using U and 

u(x); 

3. Estimate the AR(2) parameters, 𝛼1 𝑎𝑛𝑑 𝛼2, using U; 

4. Compute the variance of n step prediction error (𝐸𝑡), 𝜎𝑒
2(𝑛), using 

Equation 6 in subsection C of section III; 

5. PDF of 𝐸𝑡, 𝑓(𝑥|𝜇, 𝜎) =
1

𝜎𝑒(𝑛)√2𝜋
𝑒

−𝑥2

2𝜎𝑒
2(𝑛) (𝜇 = 0); 

6. CPU time of provisioning, CPU_PV = E[U] + 𝐸𝑡; 
7. CPV = C(CPU_PV); 

// CPU time spent on partitioning 

8. CPU time of partitioning, CPU_PT = ANN(S, NA, NQ, NU); 
9. CPT = C(CPU_PT); 

// Select the system tuning method with the lowest monetary cost 

10. If CPV > CPT then 
11.     Run the attribute partitioning process described in subsection D 

of section III; 

12. Else  
13.     Start the resource provisioning process; 

14. End If 

Figure 4. The AutoClustC algorithm. 

IV. EXPERIMENTAL PERFORMANCE STUDIES 

    In this section we present our experiment results that 
evaluate the accuracy of the CPU cost estimations for 
attribute partitioning and resource provisioning in our 
algorithm, and the performance of the new databases partition 
results on the cloud database after an attribute repartitioning 
takes place. The experiment results are presented in 4 
subsections. In subsection A, we first present the 
performance of the ANN model used for estimating the CPU 



time for attribute partitioning. The Mean Square Error (MSE) 
and the regression, which shows the relationship between the 
outputs of the network and the targets, are used to estimate 
the accuracy of the ANN model. In subsection B, we present 
the performance of the AR(2) model used for estimating the 
CPU time for resource provisioning. The error ratio, which 

equals to 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
, is used to estimate 

the accuracy of the AR(2) model. In subsection C, we present 
the final monetary cost ratio of the resource provisioning to 
the attribute partitioning. At last, in subsection D, the 
performance of the new database partitions measured by 
query response time is shown by running randomly the 
selected query sets from the TPC-H benchmark [37]. The 
experiments are done on AMAZON RDS cloud [2] with the 
database instance class of db.m1.medium and database 
engine of SQL Server SE 11.00.5058.0.v1. The experiment 
program is coded in Java and tcl script. 

A. Performance of the ANN Model for Attribute 

Partitioning Cost Forecasting 

    The training dataset is from the monitor system called 
Cloud Watch Service provided by Amazon RDS. 20% of the 
dataset is used as the validation set and 20% of the data set is 
used as the test set. The performance measured in mean MSE 
is shown in Figure 4. From this figure we can see that the best 
performance MSE is about 2.12 happened at 720 epochs, 
which is a measure of the number of times all of the training 
vectors are used once to update the weights. If more epochs 
are performed the network will be over trained since the MSE 
of validation increases after 720 epochs. 
    Then the linear regression graph is shown in Figure 5. If 
the training were perfect, the outputs of the network would 
be exactly equal to the targets of the network, i.e. the dash 
line and color line in the graph should be 100% overlapped 
(R=1). But the relationship is rarely perfect in practice. From 
Figure 5 we can see that the training, validation and test are 
all fitting the network targets well.  
 

 

Figure 4. ANN performance on forecasting partitioning CPU time. 

B. Performance of the AR(2) model for Resource 

Provisioning Cost Forecasting 

    In this subsection we use the data shown in Figure 2 as the 
historical CPU utilization demand. First the two parameters, 
𝛼1 and 𝛼2 , of the AR(2) model are estimated using the 
historical data. In this process, we use the classic Yule-

Walker method [42] and [39] to estimate 𝛼1 and 𝛼2. Then 
from the description in subsection C of Section III, the 
prediction error’s variance can be calculated. Figure 6 shows 
the probability distribution of the prediction error based on 
the historical data from Figure 2. We can see that 95% of the 
prediction errors range from -0.015 to 0.015. Comparing with 
the statistic mean of the historical data, which is 0.31, the 

error rate of forecasting is about 
0.015

0.015+0.31
= 4.6%. 

 

Figure 5. Linear regression of the network on forecasting the partitioning 
CPU time. 

 

Figure 6. Probability distribution of prediction error in resource 

provisioning CPU time forecasting. 

C. Monetary Cost Ratio of Resource Provisioning Cost to 

Attribute Partitioning Cost 

    Typically, after resource provisioning, the new assigned 
resources on the VM may take up to serval minutes for the 
acquired VM to be ready to use. This time is dependent on 
the image size (the size of the data mounted from a physical 
machine to a VM), VM type, data center location, etc. [21]. 
So the new assigned resources will not be released in minutes. 
We assume the dynamic provisioned resources will be kept 
at least for 30 minutes, which is also the time interval of two 
sample neighbor data points in Figure 2.  
    From the subsection A of section IV, we use the training 
data to estimate the CPU time cost of partitioning using the 
ANN model. The estimation is 42.55 CPU time units. From 



the subsection B of section IV we estimate the average CPU 
time provisioned to VM. The estimation is 0.325 × 30 ×
60 = 585 CPU time units. If the C(CPU_Demand) function 
is linear, then the final provision monetary cost measured in 

dollar will be about 
𝐶(585)

𝐶(42.55)
≈

585

42.55
≈ 14 times as the final 

monetary cost of partitioning. 

D. Performance of the New Database Partitions 

    In subsection C of section IV we can conclude that the 
attribute partitioning method costs less money than resource 
provisioning; so the attribute partitioning method will be used 
for performance tuning to re-guarantee the performance SLA. 
In this subsection the performance in terms of percentile 
query response time of the new database partitions after the 
partitioning process is performed is presented. 
 

     

Figure 7. Query response time of 95th percentile of query for different 

query types before and after attribute partitioning. 

    We define the performance SLA as follows: at least the 
95th percentile query response time of each query type must 
be within a specific time threshold, TH; otherwise the 
performance SLA is said to be violated. When a performance 
SLA violation occurs, the partitioning process will be 
triggered and the new partitions will be generated to replace 
the old ones. This experiment is conducted as follows:  

1. A tenant’s behavior is simulated on a cloud database.  
2. Half number of the query types are randomly selected 

from the TPC-H query type benchmark, and each type 
of query is executed for a random number of times 
(less than 300).  

3. Once all queries are successfully finished, Step 2 is 
repeated until the experiment time of 5 hours is 
reached. 

4. In Step 3 if a performance SLA violation is detected, 
the partitioning process is triggered and new partitions 
are generated before Step 2 is repeated. 

    In Figure 7, each colored line represents the percentile 
query response time of the query corresponding to that color. 
The red dashed line represents the pre-defined performance 
SLA (TH). From Figure 7 we can see that the partitioning 
process occurs 3 times at the three time points 1, 2, and 3, i.e., 
performance SLA violations occur at the 3 time points in 5 

hours. At time point 1, which is at about 1,800 seconds in the 
experiment time, a performance SLA violation is detected for 
query type 18; at time point 2, which is at about 7,100 
seconds in the experiment time, a performance SLA violation 
is detected for query type 21; and at time point 3, which is at 
about 14,700 seconds in the experiment time, a performance 
SLA violation is detected for query types 9, 12 and 19. The 
performance SLA violations are caused by query pattern 
changes since the query set running on the cloud database is 
randomly changed in Step 2. If the time threshold TH is 
defined as 7 seconds then from this figure, we can see that the 
performance SLA is re-guaranteed again after the 
partitioning process is completed (shown as the colored line 
falling below the red dashed line again after the partitioning 
process is completed).  
    Figure 7 also can give a general idea to the service 
providers of what performance SLA should be made between 
them and their customers. If the customers are asking for a 
better response time, like 5 seconds for example, then from 
Figure 7, the providers can know that such performance SLA 
is really hard to guarantee if they still use the current VM 
configuration. In that case, they can provide better computing 
resources to the customers by charging a service upgrade fee. 
So our algorithm can also help the providers make a 
profitable decision on deriving a correct performance SLA.  

V. CONCLUSIONS 

    In this paper we proposed an algorithm of re-guaranteeing 
a cloud database performance SLA by using a cost and 
performance SLA aware attribute partitioning method. The 
algorithm uses an ANN model and an AR(2) model to 
estimate the monetary cost spent on each of the two methods, 
resource provisioning and attribute partitioning, in order to 
select the most monetary cost saving method to tune the cloud 
database when a performance SLA violation occurs. The 
algorithm has the ability to help the service providers make 
reasonable performance SLAs with their customers. The 
experiments using the Amazon RDS and the TPH database 
benchmark show that the attribute partitioning process can 
provide more profit to the service providers and can re-
guarantee the performance SLA caused by query pattern 
changes. 
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