
An SLA and Operation Cost Aware Performance Re-Tuning Algorithm for

Cloud Databases

Liangzhe Li
School of Computer Science, University of Oklahoma

Norman, OK 73019, U.S.A.

lzli@ou.edu

Le Gruenwald
School of Computer Science, University of Oklahoma

Norman, OK 73019, U.S.A.

ggruenwald@ou.edu

Abstract—Cloud database, also called Database as a Service

(DbaaS), can provide subscription-oriented, enterprise-quality

services with high availability, reliability and scalability. It may

be defined as a pay-per-use model for enabling on-demand

access to reliable and configurable services that can be quickly

provisioned and released with minimal management.

Users/tenants need not set up the infrastructure or buy the

software, but pay to the cloud service provider only for the

services they use through a performance service level agreement

(SLA) that specifies the performance requirements and the

pricing associated with the leased services. Due to changes in

queries and/or databases, tenants’ performance SLA may be

violated at some point in time. So a performance tuning

technique that can re-guarantee the performance SLA when

such a violation occurs, and at the same time, does not increase

the service provider’s operating cost, is needed. This paper

proposes a performance tuning algorithm, called AutoClustC,

which estimates the costs of resource provisioning and database

re-partitioning and chooses the lower cost approach to tune the

system in order to re-guarantee the performance SLA when a

performance violation occurs. When database partitioning is

chosen, the algorithm implements a novel database attribute

partitioning algorithm, which takes both performance SLA and

operation cost into consideration, and uses data mining

techniques to automatically and dynamically re-partition the

databases for a tenant to generate better partitioning solutions.

Keywords-DbaaS; SLA; attribute partitioning; provisioning

I. INTRODUCTION

 DbaaS is becoming a more and more popular model for
providing data management functions in a cost-effective way
in the Cloud. Compared to traditional database system,
DbaaS usually serves more clients or tenants, therefore facing
more unpredictable workloads. This makes the SLAs
guarantee work more difficult. So current DbaaS providers
such as Amazon AWS-RDS [2] and Microsoft SQL Azure
[24] offer only reliability SLAs which specify the fraction of
availability over a fixed time period for their services that
users can expect when they contract to use a service, but do
not offer performance SLAs which guarantee the minimum
levels of performance such as query response time [26].
 Many efforts have been made on how to provide
performance SLAs guaranteeing minimum level of
performance, such as [18], [26] and [16]. But those works do
not address a very important problem, which is what the
service provider should do when the pre-defined performance
SLAs are violated under some specific circumstance. Some
existing solutions including static and dynamic resource
provisioning ([34], [41]), queuing and scheduling [13], and

admission control [36] could be used to solve such problem.
But different approaches have different disadvantages. First,
by static and dynamic resource provisioning (provisioning is
the process of allocating physical computing resources to
virtual machine (VM)), when the system detects that the pre-
defined performance SLAs have a higher chance to be
violated, more resources such as CPU will be added to
improve the situation. A major disadvantage of this method
is that the data center operation cost will increase, especially
for static provisioning. The consequence of the improper
provisioning might be the negative profit to the service
provider. Second, by queuing and scheduling, the incoming
queries are temporarily held in a queue and then scheduled
based on some prioritization criteria, such as worse
performance penalty cost. A major disadvantage of this
method is that this solution only works for short-term load
peaks, and some tenants’ performance may be heavily
degraded due to their queries’ postponed execution. Third, by
admission control, new queries are either stalled or rejected
when performance SLAs have higher chance to be violated.
The major disadvantage of this method is very similar to that
of the second solution in that in order to guarantee some
tenants’ performance SLAs, other tenants’ performance
might have to be sacrified because their queries were stalled
or rejected. As we can see, though a number of methods have
been proposed to generate a proper performance based SLA
for the service provider, it is really hard to find a way to re-
guarantee this performance SLA once a performance
violation occurs.
 Although the existing DbaaS providers do not provide any
performance based SLAs, they still have to deal with the
performance degrading problem caused by heavy workloads
or query pattern changes. The typical solution is to do
resources provisioning [32], [5]. Resources provisioning
could eventually guarantee all tenants’ performance but it
will cause the extra operation cost to the service provider. As
the operation cost of the physical computing resources is one
of the major costs to the service provider, improper usage of
the resources could negatively impact the service provider’s
profit. In this paper we propose a novel way of re-
guaranteeing the performance SLA by implementing a cost-
aware attribute (vertical database) partitioning algorithm,
called AutoClustC, on cloud databases. By estimating the
costs of the two approaches, resource provisioning and
attribute partitioning, when a performance SLA violation
occurs, this algorithm can choose the more profitable
approach for the service provider to take in order to re-
guarantee the performance SLA.

 The remainder of this paper is organized as follows.
Section II discusses the different database partitioning
techniques for single computers, cluster computers and
clouds. Section III introduces the theoretical aspects of the
proposed AutoClustC algorithm. Experimental evaluations
are described in Section IV. Finally, Section V presents the
conclusions and future work.

II. RELATED WORK

In recent years, new resource provisioning techniques
have been developed to address the cost and different user’s
performance SLA issues (e.g. [5], [7], [32] and [31]). Though
these techniques can help cloud service providers improve
the quality of services, a common weakness of those
techniques is that resource provisioning may significantly
reduce the service providers’ profit. Though the providers
have to handle the performance degrading problem, which
may be caused by heavy workloads or query pattern changes,
they cannot charge extra fees to the users. Computing
resource is a major operation cost to service providers,
resource provisioning will definitely increase the data
center’s operation cost. Due to the above reasons, researchers
have been looking for new ways to handle the cloud re-tuning
problem. Database partitioning is one of the methods that can
help service providers re-guarantee the performance SLAs.
Such partitioning techniques should be aware of the
performance SLA violation, has the ability to estimate the
costs of database repartitioning and resource provisioning to
choose the lower cost approach for performance tuning, and
generate better database partitioning solutions to replace the
old ones if database repartitioning is the chosen approach.
 As database partitions change over time due to changes in
queries and/or databases, attribute re-partitioning is needed.
In order to get a suitable attribute partitioning solution for
better database performance, database attribute partitioning
approaches have been proposed. In early days, many attribute
partitioning techniques for single computers were developed,
such as the algorithms published in [1], [27], [40] [28], [29],
[17] and [15]. Nowadays, as the volume of data is getting
bigger and bigger and the velocity of data is getting faster and
faster, distributed databases based on cluster computers or
clouds are widely used. The algorithms designed for single
computers do not work well for this new environment, which
leads to the development of attribute partitioning algorithms
for distributed environments. However, many of these
algorithms were designed without considering the two major
factors of cloud databases, performance SLA and operation
cost. For example, the Amossen algorithm [3] is an attribute
partitioning algorithm used only for OLTP applications on
cluster machines. Generally in an OLTP application, there are
many short queries with no many-row aggregates and the
queries are processed only from the same site. It means that
the queries happening on such a system are usually very
simple. In [3] the authors present a cost model and then use
simulated annealing to find the close-to-optimal attribute
partitioning with respect to the cost model. The algorithm
does not address any issue related to performance SLA
guarantee or operation cost, and uses a pre-defined query
workload to partition. This kind of attribute partitioning

approach is called static partitioning; for such an approach,
people may have to re-collect queries from a log file if they
want to re-partition the database. Overall, this algorithm has
no ability to automatically solve the performance SLA
violation problem on a cloud database.
 Another algorithm called GAC (Genetic Algorithm-Based
Clustering) was proposed in [9]. The rows and columns in
the attribute usage matrix are permutated to get a suitable
attribute partitioning solution. The permutating process is
then formulated as a travelling salesman problem (TSP), in
which the distance (cost) measures between a pair of rows
(attributes) and columns (transactions) are computed. The
same as TSP, the best attribute partitioning solution should
have the least distance (cost). When the distance is minimal,
the corresponding permutating result is the final attribute
partitioning solution. Similar to the Amossen algorithm, this
GAC algorithm does not discuss any issues related to
performance SLA or operation cost. The whole algorithm is
built based on an existing workload, i.e. this algorithm is a
static attribute partitioning algorithm and can be used only
one time. So this algorithm has no ability to detect the
performance SLA violation and to choose the most profitable
way for the service provider to tune the cloud database.

In [19], another static attribute partitioning algorithm,
called AutoClust, was presented. This algorithm uses the
query optimizer to generate attribute partitioning solutions.
Multiple attribute partitioning solutions are selected from the
candidate partitioning solution pool. Every future query will
be routed to the computing node containing the partition that
gives the best estimated query cost for the query execution.
An improved version of the algorithm was presented in [20].
In this version, a query statistics analysis component is added.
This component keeps monitoring the most recent queries
processed by each computing node and reading the related
query information (query id, query context, physical read
ratio, logical read ratio, and query count) from the system
views until enough physical read queries are collected. Then
the query optimizer uses the information collected to evaluate
the future average query estimated cost changing trend. If the
trend is increasing on the majority of the computing nodes,
the re-partitioning process is triggered. Though the algorithm
is a dynamic algorithm, the authors do not discuss how this
algorithm can guarantee performance SLA and how this
algorithm can measure the operation cost. So this algorithm
is not suitable for a cloud database as it cannot detect
performance SLA violations and estimate the cost for
different tuning methods on a cloud database.
 In [14], the authors present a cost model which sums the
cost of local transaction processing and remote transaction
processing. Then the ant clustering algorithm [12] is used and
takes this model as the key factor to decide whether an
attribute is to be placed in a particular partition or not. The
authors point out that the resulted partitions could be
distributed to different nodes but provide no details. In
addition, the authors do not consider performance SLA or
operation cost issues. So this algorithm cannot use on a cloud
database either.
 From the existing attribute partitioning algorithms
discussed above, [1], [27], [40], [28], [29], [17], [15], [3], [9],

[19] and [14], we see that none of them is designed for cloud
databases. Though there exist other database performance
tuning algorithms designed for cloud databases, none of them
is for attribute partitioning. For instance, the work in [35] is
for database replication in cloud databases; [32] is for
resource provisioning in cloud databases; and [10] is for
query scheduling in cloud databases. To fill this gap, in this
paper we present AutoClustC, an algorithm to re-partition
attributes on a cloud database. This algorithm has the ability
to handle the performance SLA violation problem, estimate
the cost difference between the database partitioning
approach and the resource provisioning approach, and choose
the lower cost approach to re-guarantee the performance SLA.

III. AUTOCLUSTC

In this section a performance SLA and cost-aware
automatic attribute partitioning technique, called AutoClustC,
is presented. This technique can determine whether or not a
database re-partitioning process is needed based on an SLA-
based profit optimization approach by estimating the costs of
resource provisioning and attribute partitioning. The
objective of our algorithm is to find the most profitable way
and minimize the amount of consumed resources to re-
guarantee the DbaaS performance quality (performance SLA)
when both resource provisioning and attribute partitioning
are available for the service provider. The algorithm analyzes
the most recent history resource demand (we use CPU as the
example resource in this paper) and predicts the resource
demand, which is the resource needed for resource
provisioning for the near future if a performance SLA
violation is detected for a tenant on a virtual machine (VM).
Then the algorithm will compare the resource demand of
resource provisioning with the resource demand of attribute
partitioning, which is predicted by constructing an Artificial
Neural Network using the history partitioning resource
demand data, to find the most profitable system tuning
approach.

This section is divided into 4 subsections. In this first
subsection, different multi-tenancy cloud database structures
will be discussed. Since in our algorithm we consider the
number of users of the cloud database as an important factor
for estimating the cost of partitioning process, and this factor
will be used as an input of the algorithm, we need to specify
the multi-tenancy structure used in our algorithm first. In the
second subsection, the characteristics of CPU utilization,
which could be benefited most from dynamic resource
provisioning, are briefly described. Since in order to ensure
the accuracy of predicting the cost for dynamic provisioning,
the CPU utilization has to match some pattern. In this
subsection we will figure out what kind of CPU utilization is
suitable for our prediction algorithm. In the third subsection,
the model of how to estimate the cost of resource
provisioning is proposed. In the last subsection, the model of
how to estimate the cost of partitioning is proposed.

A. Multi-Tenancy of DbaaS

 There are many different ways of deploying DbaaS on a
cloud with multi-tenancy [4], [11] and [35]. The four major
options of hosting multiple tenants on a cloud database are:

(1) all tenants’ data are located within the same database and
the same tables with an extra identifier such as “TenantID” to
differentiate the records from different tenants; (2) all tenants
are located within a single database but in separate schemas
to differentiate their tables in order to provide better schema
level security; (3) each tenant is located in a separate database
within the same DBMS instance in order to provide much
greater security; and (4) each tenant has a separate VM with
its own OS and DBMS in order to provide the greatest
security and the most flexible control via VM management.
 In this paper we assume the majority users of the cloud
database are middle or small size companies since large size
companies usually have the economic ability to afford their
own data center. So we use the third option as the multi-
tenancy structure. This option provides a good trade-off
between wasted resources due to extra OS and software
license, and the complex management and security issues
associated with the first two options [18].

B. CPU Utilization Traces on Cloud Databases

 In [5] the authors describe three main categories of CPU
utilization behaviors by studying a large number of traces
from production servers. The authors conclude that only the
utilization behavior shown in Figure 1, which is characterized
by strong utilization variability and good autocorrelation (a
mathematical representation of the degree of similarity
between a given time series and a lagged version of itself over
successive time intervals [6]) associated with this periodic
behavior, could be benefited greatly by using the dynamic
resource provisioning. In practice, this assumption is true for
many applications since the workload on the server is often
very low during the late evening and early morning, but will
increase to a peak during the day time, then go down to the
valley status after the day time. We therefore assume this
CPU utilization behavior in our research.

Figure 1. CPU utilization behaviors.

 The CPU utilization behavior illustrated in Figure 1 has a

specific period of about 1 day. The autocorrelation is always

above 0.5 for 100 lags. It has been shown that this kind of

http://www.investopedia.com/terms/t/timeseries.asp

time series behavior is very suitable for near future behavior

prediction using the most recent historical behavior data [5].

In order to model such utilization behavior, in our algorithm,

an Auto Regressive (AR) model will be used. An AR model

can describe a certain time-varying process in which the

output variables depend linearly on this process’s own

previous values and on a stochastic term [33]. In the next

subsection, the algorithm of how to use an AR model to

predict the near future CPU utilization demand is presented.

C. CPU Utilization Forecasting for Resource Provisioning

 In order to understand the forecasting process more clearly,
consider an example shown in Figure 2, which shows a
snapshot of 24 hours CPU utilization demand historical data
(U) with the demand probability density function (PDF) u(x).
If the current time point is t0, and the prediction time interval
is t, the forecasting process is to compute the average CPU
demand, which is denoted by Uto+t in the next prediction time
interval. If the prediction error is Et, the forecasting result will
be Uto+t + Et. In [5], the authors use an AR model to compute
the gain, which is the ratio of the estimated future CPU
demand of dynamic resource provisioning to the estimated
future CPU demand of static resource provisioning. In our
algorithm we also use an AR model, but the exact estimated
future CPU demand is computed so that we can compare the
costs of resource provisioning and attribute partitioning.

Figure 2. Dynamic provisioning estimation.

 If we use ut(x) to represent the demand probability density
function of the predicted time series, the exact average future
demand forecast can be represented as

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ (𝑥 + 𝐸𝑡) × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
 (1)

 The expression (𝑥 + 𝐸𝑡) represents a given CPU resource
allocation, which will be weighted with 𝑢𝑡(𝑥) , the
probability of a particular provisioned CPU amount x.
 Equation 1 can be rewritten as

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ 𝑥 × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 (2)

 Equation 2 can be approximated using the following
formula:

𝑈𝑡0+𝑡 + 𝐸𝑡 ≈ ∫ 𝑥 × 𝑢(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 = 𝐸[𝑈] + 𝐸𝑡 (3)

 where E[U] is the statistical mean of the measured
historical CPU demand. Now the only undetermined
parameter in Equation 3 is 𝐸𝑡, which will be computed based
on [33] using Equations (4), (5) and (6).

 Based on the assumption of our algorithm, the CPU
demand is characterized by periodic behaviors. So for any
time series T, the CPU demand in T can be represented as

𝑈𝑇 = 𝐷𝑇 + 𝑈𝑇
𝑅 (4)

 where 𝐷𝑇 is the sum of periodic components and 𝑈𝑇
𝑅 is the

residual component of the CPU demand. Since the period is
known, the 𝐷𝑇 is deterministic. The only random variable is

𝑈𝑇
𝑅. In [33], 𝑈𝑇

𝑅 is modeled using a class of AR processes. An
AR model is a simple and effective method in time series
modeling. In particular, the authors use the second AR model
(AR(2) model) as it has been demonstrated that a second
order AR model is sufficient in most of the cases. The AR(2)
model can be represented as

𝑈𝑇
𝑅 = 𝛼1𝑈𝑇−1

𝑅 + 𝛼2𝑈𝑇−2
𝑅 + 𝜖𝑇 (5)

 where 𝛼1 𝑎𝑛𝑑 𝛼2 are two AR(2) parameters that are
estimated from the historical data, and 𝜖𝑇 is the error term,
which is assumed to be an independently and identically
distributed Gaussian random variable with a mean of zero and
a variance of 𝜎𝜖

2. In order to study the accuracy of an n step
prediction, a characteristic function of the AR model is
defined as

𝐺(𝑗) =
𝛾1

𝑗+1
−𝛾2

𝑗+1

𝛾1−𝛾2
 (6)

 where 𝛾1 𝑎𝑛𝑑 𝛾2 are the roots of the equation 1 − 𝛼1𝐵 −
𝛼2𝐵2 = 0. Then the n step prediction error is represented
using the Gaussian variable having mean zero and variance

𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

2𝑛−1
𝑗=0 . Here, 𝜎𝜖

2 is the error variance of one

step prediction.
 Once the future CPU demand, CPU_Demand, is estimated,
it can be used as the argument in the cost function
C(CPU_Demand) to get the exact operational cost for
resource provisioning, where C is a function describing the
relationship between CPU time and money spent. In the next
step, we need to estimate the cost of attribute partitioning. In
the next subsection, a novel estimation technique will be
proposed to predict the cost of attribute partitioning.

D. CPU Utilization Forecasting for Attribute Partitioning

 There are many factors that could impact the CPU time
spent on figuring out a suitable attribute partitioning solution
for a particular database table. The partitioning method used
in our algorithm is based on the Closed Item Sets (CIS) [30]
mining. The original version of the algorithm, called
AutoClust, was first published in [15]. We can conclude 3
major factors that may heavily impact the CPU utilization
spent on the attribute partitioning process. The first factor is
the size of the database, S. In AutoClust, query optimizer is
used to estimate the cost of each partitioning solution, i.e.
partitions will be temporarily physically created in order to
let the query optimizer compute the cost. If the database size
is large the partition creation process will require a high CPU
cost to be finished. The second factor is the number of
attributes in a database table, NA (if the partitioning process
covers more than one table, the maximum number of
attributes among those tables will be used). When mining the
CIS from the query set, possible attribute sets have to be
generated. If there are NA attributes, the possible number of
attribute sets would be 2NA. Then each attribute set has to be
compared with the attribute set accessed by each query in

order to find out the CIS. There are many algorithms such as
[43], [38] to prune the number of possible attribute sets, NA;
but NA is still another factor that will impact the CPU cost on
partitioning. Finally, the third factor is the number of query
types, NQ. From the second factor, we already know each
query type will be scanned in order to tell whether an attribute
set is CIS. So NQ is a factor that has to be considered. Besides
the above three factors, one more factor has to be added from
the aspect of multi-tenancy, which is the number of users of
the DbaaS, NU. In DbaaS, common physical resources are
shared by multiple tenants. A major consequence of such
environment is that the multiple tenants will compete for the
resource of the same VM, which will delay the partition
creation process. Hence the degree of multi-tenancy becomes
an additional factor.
 A cloud database is a complex system and the relationship
between the partitioning cost and S, NA, NQ and NU is highly
non-linear. Because of these characteristics, we propose to
use an Artificial Neural Network (ANN) [25] to forecast the
partitioning process cost since ANN performs well on
complex systems that are intrinsically non-linear in nature [8].
In our ANN model, the inputs are S, NA, NQ and NU. One
hidden layer with 8 neural nodes (twice the size of the input)
is used between the input and output layers. The control
architecture is a feed forward back propagation network. The
activation function used is the sigmoid function, which is a
transfer function used to calculate a layer's output from its net
input, for all the inner nodes. This function can give the
neural network the ability to learn and generate an output for
which it is not trained. However, in order to make the ANN
work properly, a well-defined training dataset is necessary.
The whole ANN works in two phases: (1) the network is
trained using the data provided by users; and (2) the new
input is fed to the network and the network produces a desired
output that is most appropriate for the given input. Since it is
important to choose a proper training function and learning
function, the TRAINGDX [22] and LEARNGDM [23]
functions can be used in the network. The TRAINGDX
function is a network training function that updates weight
and bias values according to gradient descent momentum and
an adaptive learning rate. The LEARNGDM function
calculates the weight change for a given neuron from the

neuron's input and error, the weight, learning rate, and

momentum constant, according to gradient descent with
momentum. The structure of the whole network is shown in
Figure 3 where W represents the weight of a node and B
represents the bias of a node. There are four different types
of input (S, NA, NQ and NU) and one type of output (CPU
time), so we have 4 nodes in input and 1 node in output. We
use twice the size of the input types as the number of nodes
in the hidden layer, so we have 8 nodes in the hidden layer.
 Once the ANN model is constructed using the training
dataset, the CPU time spent on the partitioning process can
be predicted by sending the current values of the system
parameters which are S, NA, NQ and NU, to the ANN model.
Then the money spent on performing attribute partitioning
tuning and resource provisioning tuning can be calculated by
using the C(CPU_Demand) function where the CPU time
estimated from each of the two forecasting partitioning and

resource provisioning processes will be the argument of the
C function. The method that yields the lowest monetary cost
will be selected to improve the system performance. The
algorithm is shown in Figure 4.

Figure 3. The ANN model used for partitioning cost forecasting.

Input:

1. Historical CPU utilization data (U)

2. Time interval of the future CPU demand forecasting (t)
3. Size of the database (S)

4. Maximum number of attributes of tables in the database (NA)

5. Number of query types (NQ)
6. Number of users (NU)

Output:

1. Estimated monetary cost of resource provisioning (CPV)
2. Estimated monetary cost of attribute partitioning (CPT)

// CPU time demand estimation for provisioning

1. Compute u(x), the PDF of CPU utilization, using U;
2. Compute E[U], the statistical mean of CPU utilization, using U and

u(x);

3. Estimate the AR(2) parameters, 𝛼1 𝑎𝑛𝑑 𝛼2, using U;

4. Compute the variance of n step prediction error (𝐸𝑡), 𝜎𝑒
2(𝑛), using

Equation 6 in subsection C of section III;

5. PDF of 𝐸𝑡, 𝑓(𝑥|𝜇, 𝜎) =
1

𝜎𝑒(𝑛)√2𝜋
𝑒

−𝑥2

2𝜎𝑒
2(𝑛) (𝜇 = 0);

6. CPU time of provisioning, CPU_PV = E[U] + 𝐸𝑡;
7. CPV = C(CPU_PV);

// CPU time spent on partitioning

8. CPU time of partitioning, CPU_PT = ANN(S, NA, NQ, NU);
9. CPT = C(CPU_PT);

// Select the system tuning method with the lowest monetary cost

10. If CPV > CPT then
11. Run the attribute partitioning process described in subsection D

of section III;

12. Else
13. Start the resource provisioning process;

14. End If

Figure 4. The AutoClustC algorithm.

IV. EXPERIMENTAL PERFORMANCE STUDIES

 In this section we present our experiment results that
evaluate the accuracy of the CPU cost estimations for
attribute partitioning and resource provisioning in our
algorithm, and the performance of the new databases partition
results on the cloud database after an attribute repartitioning
takes place. The experiment results are presented in 4
subsections. In subsection A, we first present the
performance of the ANN model used for estimating the CPU

time for attribute partitioning. The Mean Square Error (MSE)
and the regression, which shows the relationship between the
outputs of the network and the targets, are used to estimate
the accuracy of the ANN model. In subsection B, we present
the performance of the AR(2) model used for estimating the
CPU time for resource provisioning. The error ratio, which

equals to
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
, is used to estimate

the accuracy of the AR(2) model. In subsection C, we present
the final monetary cost ratio of the resource provisioning to
the attribute partitioning. At last, in subsection D, the
performance of the new database partitions measured by
query response time is shown by running randomly the
selected query sets from the TPC-H benchmark [37]. The
experiments are done on AMAZON RDS cloud [2] with the
database instance class of db.m1.medium and database
engine of SQL Server SE 11.00.5058.0.v1. The experiment
program is coded in Java and tcl script.

A. Performance of the ANN Model for Attribute

Partitioning Cost Forecasting

 The training dataset is from the monitor system called
Cloud Watch Service provided by Amazon RDS. 20% of the
dataset is used as the validation set and 20% of the data set is
used as the test set. The performance measured in mean MSE
is shown in Figure 4. From this figure we can see that the best
performance MSE is about 2.12 happened at 720 epochs,
which is a measure of the number of times all of the training
vectors are used once to update the weights. If more epochs
are performed the network will be over trained since the MSE
of validation increases after 720 epochs.
 Then the linear regression graph is shown in Figure 5. If
the training were perfect, the outputs of the network would
be exactly equal to the targets of the network, i.e. the dash
line and color line in the graph should be 100% overlapped
(R=1). But the relationship is rarely perfect in practice. From
Figure 5 we can see that the training, validation and test are
all fitting the network targets well.

Figure 4. ANN performance on forecasting partitioning CPU time.

B. Performance of the AR(2) model for Resource

Provisioning Cost Forecasting

 In this subsection we use the data shown in Figure 2 as the
historical CPU utilization demand. First the two parameters,
𝛼1 and 𝛼2 , of the AR(2) model are estimated using the
historical data. In this process, we use the classic Yule-

Walker method [42] and [39] to estimate 𝛼1 and 𝛼2. Then
from the description in subsection C of Section III, the
prediction error’s variance can be calculated. Figure 6 shows
the probability distribution of the prediction error based on
the historical data from Figure 2. We can see that 95% of the
prediction errors range from -0.015 to 0.015. Comparing with
the statistic mean of the historical data, which is 0.31, the

error rate of forecasting is about
0.015

0.015+0.31
= 4.6%.

Figure 5. Linear regression of the network on forecasting the partitioning
CPU time.

Figure 6. Probability distribution of prediction error in resource

provisioning CPU time forecasting.

C. Monetary Cost Ratio of Resource Provisioning Cost to

Attribute Partitioning Cost

 Typically, after resource provisioning, the new assigned
resources on the VM may take up to serval minutes for the
acquired VM to be ready to use. This time is dependent on
the image size (the size of the data mounted from a physical
machine to a VM), VM type, data center location, etc. [21].
So the new assigned resources will not be released in minutes.
We assume the dynamic provisioned resources will be kept
at least for 30 minutes, which is also the time interval of two
sample neighbor data points in Figure 2.
 From the subsection A of section IV, we use the training
data to estimate the CPU time cost of partitioning using the
ANN model. The estimation is 42.55 CPU time units. From

the subsection B of section IV we estimate the average CPU
time provisioned to VM. The estimation is 0.325 × 30 ×
60 = 585 CPU time units. If the C(CPU_Demand) function
is linear, then the final provision monetary cost measured in

dollar will be about
𝐶(585)

𝐶(42.55)
≈

585

42.55
≈ 14 times as the final

monetary cost of partitioning.

D. Performance of the New Database Partitions

 In subsection C of section IV we can conclude that the
attribute partitioning method costs less money than resource
provisioning; so the attribute partitioning method will be used
for performance tuning to re-guarantee the performance SLA.
In this subsection the performance in terms of percentile
query response time of the new database partitions after the
partitioning process is performed is presented.

Figure 7. Query response time of 95th percentile of query for different

query types before and after attribute partitioning.

 We define the performance SLA as follows: at least the
95th percentile query response time of each query type must
be within a specific time threshold, TH; otherwise the
performance SLA is said to be violated. When a performance
SLA violation occurs, the partitioning process will be
triggered and the new partitions will be generated to replace
the old ones. This experiment is conducted as follows:

1. A tenant’s behavior is simulated on a cloud database.
2. Half number of the query types are randomly selected

from the TPC-H query type benchmark, and each type
of query is executed for a random number of times
(less than 300).

3. Once all queries are successfully finished, Step 2 is
repeated until the experiment time of 5 hours is
reached.

4. In Step 3 if a performance SLA violation is detected,
the partitioning process is triggered and new partitions
are generated before Step 2 is repeated.

 In Figure 7, each colored line represents the percentile
query response time of the query corresponding to that color.
The red dashed line represents the pre-defined performance
SLA (TH). From Figure 7 we can see that the partitioning
process occurs 3 times at the three time points 1, 2, and 3, i.e.,
performance SLA violations occur at the 3 time points in 5

hours. At time point 1, which is at about 1,800 seconds in the
experiment time, a performance SLA violation is detected for
query type 18; at time point 2, which is at about 7,100
seconds in the experiment time, a performance SLA violation
is detected for query type 21; and at time point 3, which is at
about 14,700 seconds in the experiment time, a performance
SLA violation is detected for query types 9, 12 and 19. The
performance SLA violations are caused by query pattern
changes since the query set running on the cloud database is
randomly changed in Step 2. If the time threshold TH is
defined as 7 seconds then from this figure, we can see that the
performance SLA is re-guaranteed again after the
partitioning process is completed (shown as the colored line
falling below the red dashed line again after the partitioning
process is completed).
 Figure 7 also can give a general idea to the service
providers of what performance SLA should be made between
them and their customers. If the customers are asking for a
better response time, like 5 seconds for example, then from
Figure 7, the providers can know that such performance SLA
is really hard to guarantee if they still use the current VM
configuration. In that case, they can provide better computing
resources to the customers by charging a service upgrade fee.
So our algorithm can also help the providers make a
profitable decision on deriving a correct performance SLA.

V. CONCLUSIONS

 In this paper we proposed an algorithm of re-guaranteeing
a cloud database performance SLA by using a cost and
performance SLA aware attribute partitioning method. The
algorithm uses an ANN model and an AR(2) model to
estimate the monetary cost spent on each of the two methods,
resource provisioning and attribute partitioning, in order to
select the most monetary cost saving method to tune the cloud
database when a performance SLA violation occurs. The
algorithm has the ability to help the service providers make
reasonable performance SLAs with their customers. The
experiments using the Amazon RDS and the TPH database
benchmark show that the attribute partitioning process can
provide more profit to the service providers and can re-
guarantee the performance SLA caused by query pattern
changes.

REFERENCES

[1] E. S. Abuelyaman, “An optimized scheme for vertical
partitioning of a distributed database,” International Journal of
Computer Science and Network Security (IJCSNS), vol.8, no.1,
2008.

[2] Amazon AWS-RDS. Amazon RDS homepage, 2015.
https://aws.amazon.com/rds/, Accessed Nov. 2105.

[3] R. Amossen, “Vertical partitioning of relational OLTP databases
using integer programming,” the 5th International Workshop on Self
Managing Database Systems (SMDB), 2010.

[4] S. Aulbach, D. Jacobs, A. Kemper and M. Seibold, “A
comparison of flexible schemas for software as a service,” Special
Interest Group on Management of Data (SIGMOD), 2009.

[5] N. Bobroff, A. Kochut and K. Beaty, “Dynamic placement of
virtual machines for managing SLA violations,” 10th IFIP/IEEE
International Symposium on Integrated Network Management
(IM’07), 2007.

https://aws.amazon.com/rds/

[6] G. E. P. Box and G. M. Jenkins, “Time series analysis:
forecasting and control,” San Francisco, Holden Day, pp. 575. 1976.

[7] R. Buyya, S. K. Garg and R. N. Calheiros, “SLA-oriented
resource provisioning for cloud computing: challenges, architecture,
and solutions,” International Conference on Cloud and Service
Computing, 2011.

[8] G. Zhang, B. E. Patuwo and M. Y. Hu, “Forecasting with
artificial neural networks: the state of the art,” Int. J. Forecast., vol.
14, pp. 35-62, 1998.

[9] C. H. Cheng, W. K. Lee and K. F. Wong, “A genetic algorithm
based clustering approach for database partitioning,” IEEE
Transactions on System, Man and Cybernetics, vol. 32, no. 3, 2002.

[10] Y. Chi, H. J. Moon and H. Hacigumus, “iCBS: incremental
cost-based scheduling under piecewise linear SLAs,” PVLDB, 2011.

[11] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S.
Madden, H. Balakrishnan and N. Zeldovich, “Relational cloud: a
database-as-a-service for the cloud,” In CIDR, 2011.

[12] J. L. Deneubourg, S. Aron, S. Goss and J. M. Pasteels, “The
self-organizing exploratory pattern of the argentine ant,” Journal of
Insert Behavior, vol. 3, pp. 159, 1990.

[13] D. Gmach, S. Krompass, A. Scholz, M. Wimmer and A.
Kemper, “Adaptive quality of service management for enterprise
services,” ACM Transactions, Web, 2008.

[14] M. Goli and S. A. Rankoohi, “New vertical fragmentation
algorithm based on ant collective behavior in distributed database
systems,” Knowledge and Information Systems, vol. 30, issue 2,
February 2012.

[15] S. Guinepain and L. Gruenwald, “Using cluster computing to
support automatic and dynamic database clustering,” International
Workshop on Automatic Performance Tuning (IWAPT), September
2008.

[16] H. Jayathilaka, C. Krintz and R. Wolski, “Response time
service level agreements for cloud-hosted web applications,” Proc.
of the Sixth ACM Symposium on Cloud Computing (SoCC), pp.
315-328, 2015.

[17] A. Jindal and J. Dittrich, “Relax and let the database do the
partitioning online,” In Business Intelligence for Real Time
Enterprise (BIRTE), September 2011.

[18] W. Lang, S. Shankar, J. Patel and A. Kalhan, “Towards multi-
tenant performance SLOs,” Proc. of the 28th IEEE Int. Conf. on
Data Engineering (ICDE), pp. 702-713, 2012.

[19] L. Li, and L. Gruenwald, “Autonomous database partitioning
using data mining on single computers and cluster computers,”
International Database Engineering & Applications Symposium
(IDEAS), August 2012.

[20] L. Li and L. Gruenwald, “SMOPD-C: an autonomous vertical
partitioning technique for distributed databases on cluster
computers,” the 15th IEEE International Conference on Information
Reuse and Integration (IRI '14), November 2014.

[21] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” Proc. of IEEE 5th International
Conference on Cloud Computing, 2012.

[22] Description of TRAINGDX function, MathWorks
Documentation page, 2015.
http://www.mathworks.com/help/nnet/ref/traingdx.html, Accessed
Nov. 2015.

[23] Description of LEARNGDM function, MathWorks
Documentation page, 2015.
http://www.mathworks.com/help/nnet/ref/learngdm.html, Accessed
Nov. 2015.

[24] Microsoft SQL Azure. Microsoft SQL Azure homepage, 2015.
https://azure.microsoft.com/en-us/services/sql-database/, Accessed
Nov. 2015.

[25] W. McCulloch and P. Walter, “A logical calculus of ideas
immanent in nervous activity,” Bulletin of Mathematical Biophysics
5 (4): pp. 115–133, 1943.

[26] V. Narasayya, S. Das, M. Syamala, B. Chandramouli and S.
Chaudhuri, “SQLVM: performance isolation in multi-tenant
relational database-as-a-service,” In 6th Biennial Conference on
Innovative Data Systems Research (CIDR), 2013.

[27] S. Navathe, S. Ceri, G. Wierhold and J. Dou, “Vertical
partitioning algorithms for database design,” ACM Transactions on
Database Systems, vol. 9, no. 4, December 1984.

[28] S. Navathe and M. Ra, “Vertical partitioning for database
design: a graph algorithm,” ACM Special Interest Group on
Management of Data (SIGMOD) International Conference on
Management of Data, 1989.

[29] S. Papadomanolakis, D. Dash and A. Ailamaki, “Efficient use
of the query optimizer for automated physical design,” International
Conference Very Large Databases (VLDB), September 2007.

[30] N. Pasquier, Y. Bastidem, R. Taouil and L. Lakhal, “Efficient
mining of association rules using closed item set lattices,”
Information Systems, vol. 24, no. 1, 1999.

[31] C. Ryan, C. Kyle, B. Kris and L. Lukasz, “Cost-aware cloud
provisioning,” IEEE 11th International Conference on e-Science,
2015.

[32] S. Sakr and A. Liu, “SLA-based and consumer-centric dynamic
provisioning for cloud databases,” Proc. IEEE Cloud, pp. 360-367,
2012.

[33] D. She and J. Hellerstein, “Predictive models for proactive
network management: application to a production web server,” in
Proc. of the IEEE/IFIP Network Operations and Management
Symposium, 2000.

[34] P. Shivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A.
Yumerefendi, S. Babu and J. Chase, “Automated and on-demand
provisioning of virtual machines for database applications,” In Proc.
of SIGMOD, 2007.

[35] F. R. C. Sousa and J. C. Machado, “Towards elastic multi-
tenant database replication with quality of service,” in IEEE 5th
International Conference on Utility and Cloud Computing (UCC),
2012.

[36] S. Tozer, T. Brecht and A. Aboulnaga, “Q-cop: avoiding bad
query mixes to minimize client timeouts under heavy loads,” In Proc.
of ICDE, 2010.

[37] Description of TPC-H benchmark, TPC official website, 2016.
http://www.tpc.org/tpch/, Accessed Jan. 2106.

[38] T. Uno, M. Kiyomi and H. Arimura, “LCM ver. 2: efficient
mining algorithms for frequent/closed/maximal itemsets,” Proc. of
the IEEE ICDM workshop on frequent itemset mining
implementations. Brighton, UK, 2004.

[39] G. Walker, “On periodicity in series of related terms,” Proc. of
the Royal Society of London, ser. A, vol. 131, pp. 518–532, 1931.

[40] W. C. Wesley and I. Leong, “A transaction-based approach to
vertical partitioning for relational database systems,” IEEE
Transactions on Software Engineering, vol. 19, no. 8, August 1993.

[41] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu and H. Hacigumus,
“Intelligent management of virtualized resources for database
management systems in cloud environment,” In Proc. of ICDE,
2011.

[42] G. U. Yule, “On a method of investigating periodicities in
disturbed series, with special reference to wolfer's sunspot numbers,”
Philosophical Transactions of the Royal Society of London, ser. A,
vol. 226, pp. 267–298, 1927.

[43] M. Zaki and C. J. Hsiao, “Efficient algorithms for mining
closed item sets and their lattice structure,” IEEE Trans Knowl Data
Eng 17(4), pp. 462–478, 2005.

http://www.mathworks.com/help/nnet/ref/traingdx.html
http://www.mathworks.com/help/nnet/ref/learngdm.html
https://azure.microsoft.com/en-us/services/sql-database/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chard,%20Ryan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chard,%20Kyle.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bubendorfer,%20Kris.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lacinski,%20Lukasz.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7303998
http://www.tpc.org/tpch/

